

RFS

RLK cable, A-series

1-1/4" RADIAFLEX® RLKL Cable, A-series

- RADIAFLEX® functions as a distributed antenna to provide communications in tunnels, mines and large building complexes and is the solution for any application in confined areas.
- Slots in the copper outer conductor allow a controlled portion of the internal RF energy to be
 radiated into the surrounding environment. Conversely, a signal transmitted near the cable will
 couple into the slots and be carried along the cable length.
- RADIAFLEX® is used for both one-way and two-way communication systems and because of its broadband capability, a single radiating cable can handle multiple communication systems simultaneously.
- This RADIAFLEX® radiating cable utilize a low-loss cellular polyethylene foam dielectric and a smooth copper outer conductor which offers a superior electrical performance together with good bending properties.

FEATURES / BENEFITS

- TETRA optimized cable
- Wideband from 30 MHz to 520 MHz
- For applications in tunnels and buildings
- A Low coupling loss variations

Technical Features

GENERAL SPECIFICATIONS

GENERAL SPECIFICATIONS		
Size		1-1/4"
ELECTRICAL SPECIFICATIONS		
Max. Operating Frequency	MHz	520
Cable Type		RLKL
Impedance	Ohm	50 +/- 2
Velocity	%	91
Capacitance	pF/m (pF/ft)	73 (22.25)
DC-resistance inner conductor	Ω/km (Ω/1000ft)	0.84 (0.256)
DC-resistance outer conductor	Ω/km (Ω/1000ft)	1.85 (0.564)
Stop bands	MHz	34-37, 41-44, 82-86
MECHANICAL SPECIFICATIONS		
Jacket		JFN
Jacket Description		Halogen free, non corrosive, flame and fire retardant, low smoke, polyolefin
Slot Design		Groups of vertical slots at short intervals
Inner Conductor Material		Copper Tube
Outer Conductor Material		Overlapping Copper Foil
Diameter Inner Conductor	mm (in)	13.45 (0.53)
Diameter Outer Conductor	mm (in)	34 (1.34)
Diameter over Jacket	mm (in)	38.1 (1.5)
Minimum Bending Radius, Single Bend	mm (in)	500 (20)
Cable Weight	kg/m (lb/ft)	0.87 (0.58)
Tensile Force	N (lb)	2000 (440)
Indication of Slot Alignment		Guides opposite to slots
Recommended Clamp Spacing	m (ft)	1.3 (4.25)
Minimum Distance to Wall	mm (in)	80 (3.15)
TEMPERATURE SPECIFICATIONS		
Storage Temperature	°C(°F)	-70 to 85 (-94 to 185)
Installation Temperature	°C(°F)	-25 to 60 (-13 to 140)
Operation Temperature	°C(°F)	-40 to 85 (-40 to 185)

RLKL114-50JFNAD

REV:

All information contained in the present datasheet is subject to confirmation at time of ordering

1-1/4" RADIAFLEX® RLKL Cable, A-series

requency	Longitudinal	Couplir	ng Loss	TESTING AND ENVIRONMENTA	L
	loss			Jacket Testing Methods	Test methods for fire behaviour of cable :
MHz	dB/100m (dB/100ft)	50%, dB	95%, dB		IEC 60754-1/-2 smoke emission: halogen free, non corrosive IEC 61034 low smoke IEC 60332-1 flame retardant
N FREE SPACE					IEC 60332-3-24 fire retardant UL1666, ASTM E 662, NES711 and NES713
75	0.79 (0.24)	49 (52)	60 (62)		0L1000, ASTNI E 002, NES711 and NES713
150	1.12 (0.34)	57 (59)	60 (65)		
225	1.37 (0.42)	57 (59)	61 (65)		
380	1.95 (0.60)	54 (57)	58 (62)		
400	2.00 (0.61)	53 (56)	56 (60)		
420	2.12 (0.65)	53 (56)	55 (59)		
450	2.18 (0.67)	52 (56)	54 (58)		
470	2.30 (0.70)	52 (56)	54 (58)		
500	2.41 (0.74)	51 (55)	53 (57)		
TYPICAL					
TUNNEL 75	1.24 (0.38)	52 (53)	60 (62)		
150	1.24 (0.38)	52 (53)	61 (65)		
225	1.80 (0.55)	56 (58)	61 (64)		
380	. ,	. ,	54 (58)		
	2.31 (0.71)	51 (55)	. ,		
400 420	2.38 (0.73)	50 (54)	53 (57) 53 (57)		
	2.44 (0.75)	50 (54)	. ,		
450	2.54 (0.77)	49 (53)	51 (55)		
470	2.62 (0.80)	49 (53)	51 (55)		
500	2.73 (0.83)	49 (53)	51 (55)		
					uation of RADIAFLEX® cables are measured according to IEC 61196-4. tunnel conditions (ground level method) and free space method (cable in
xternal				The cable tests are performed under 2 m height).	r tunnel conditions (ground level method) and free space method (cable in
			Ð	The cable tests are performed under 2 m height). Coupling loss values are measured The coupling loss values given in bra	r tunnel conditions (ground level method) and free space method (cable i with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel
			() () () () () () () () () () () () () (The cable tests are performed under 2 m height). Coupling loss values are measured The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a	r tunnel conditions (ground level method) and free space method (cable i with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values with
			9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment.	r tunnel conditions (ground level method) and free space method (cable i with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel hong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values with .). Values are stated for a typical in-tunnel application as well as for the I
			9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured The coupling loss values given in bra and orthogonal). The best values am Coupling loss values are given with manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar	r tunnel conditions (ground level method) and free space method (cable i with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel hong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values with .). Values are stated for a typical in-tunnel application as well as for the I and stop band, please contact RFS for further assistance.
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the l and stop band, please contact RFS for further assistance.
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured The coupling loss values given in bra and orthogonal). The best values am Coupling loss values are given with manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu
			9 9 9 9	The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu
				The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the l and stop band, please contact RFS for further assistance.
				The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the l and stop band, please contact RFS for further assistance.
				The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable i with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the l and stop band, please contact RFS for further assistance.
				The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, parallel nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the l and stop band, please contact RFS for further assistance.
				The cable tests are performed under 2 m height). Coupling loss values are measured of The coupling loss values given in bra and orthogonal). The best values are Coupling loss values are given with a manufacturing tolerance of +5% (typ norm free-space environment. In case of a conflict of operational ar As with any radiating cable, the performed	r tunnel conditions (ground level method) and free space method (cable with dipole antenna. ackets are average values of all three spatial orientations (radial, paralle nong the three spatial orientations are stated as well. a manufacturing tolerance of +3dB (typ.) and longitudinal loss values wit .). Values are stated for a typical in-tunnel application as well as for the nd stop band, please contact RFS for further assistance. prmance in actual building or tunnel environments may deviate from figu