1-5/8" CELLFLEX[®] Lite Low-Loss Foam-Dielectric Coaxial Cable

CELLFLEX[®] Lite 1-5/8" low loss flexible cable Application: Main feed line

Features/Benefits

- It represents a light-weight transmission line solution
- The light weight of CELLFLEX® Lite coaxial cable results in reduced work-force and lifting gear. It is easy to transport, handle and install
- CELLFLEX® Lite coaxial cables enable savings in shipping cost. It exhibits a cost-efficient alternative to copper transmission line
- CELLFLEX® Lite coaxial cable helps to reduce CAPEX spending.
- It offers a user-friendly compatibility with RFS's existing range of accessories CELLFLEX® Lite coaxial cable requires less inventory additions, thus reduced OPEX.
- It enables trouble-free installation and operation CELLFLEX® Lite coaxial cable avoids downtime and reduces OPEX.
- The attenuation is comparable to the industry standard in traditional cable CELLFLEX® Lite coaxial cable maintains uncompromised coverage.
- Specially developed connectors exhibit low and stable intermodulation performance CELLFLEX® Lite coaxial cable exceeds present PIM standards ensuring no dropped calls.
 It is available with UV-resistant polyethylene or flame-retardant jackets
- CELLFLEX® Lite coaxial cable can be used outside and in indoor applications where restrictions apply.
- It exceeds industry standard for return loss performance CELLFLEX® Lite coaxial cable means zero risk in network planning.

Technical Features

Structure			
Inner conductor:	Corrugated Copper Tube	[mm (in)]	17.6 (0.69)
Dielectric:	Foam Polyethylene	[mm (in)]	42.4 (1.67)
Outer conductor:	Corrugated Aluminium	[mm (in)]	46.4 (1.83)
Jacket:	Polyethylene, PE	[mm (in)]	50.2 (1.98)
Mechanical Prop	perties		
Weight, approximately		[kg/m (lb/ft)]	0.79 (0.53)
Minimum bending radius, single bending		[mm (in)]	200 (8)
Minimum bending radius, repeated bending		[mm (in)]	500 (20)
Bending moment		[Nm (lb-ft)]	40.7 (30.7)
Max. tensile force		[N (lb)]	1800 (405)
Recommended / maximum clamp spacing		[m (ft)]	1.2 / 1.5 (4 / 5)
Electrical Proper	rties		
Characteristic impedance		[Ω]	50 +/- 1
Relative propagation velocity		[%]	90
Capacitance		[pF/m (pF/ft)]	74 (22.5)
Inductance		[µH/m (µH/ft)]	0.185 (0.056)
Max. operating frequency		[GHz]	2.75
Jacket spark test RMS		[V]	10000
Peak power rating		[kW]	310
RF Peak voltage rating		[V]	5600
DC-resistance inner conductor		[Ω/km (Ω/1000ft)]	1.3 (0.396)
DC-resistance outer conductor		[Ω/km (Ω/1000ft)]	0.61 (0.186)
Recommended 1	Temperature Range		
Storage temperature		[°C (°F)]	-70 to 85 (-94 to 185)
Installation temperature		[°C (°F)]	-40 to 60 (-40 to 140)
Operation temperature		[°C (°F)]	-50 to 85 (-58 to 185)

Power

Frequency

[MHz] [dB/100m [dB/100ft] [kW] 1 1 1 1 0.5 0.0480 0.0146 244 1.0 0.0680 0.0207 172 1.5 0.0834 0.0254 140 2.0 0.0963 0.0294 121 10 0.217 0.0662 53.9 20 0.309 0.0942 37.9 30 0.380 0.1161 30.8 50 0.495 0.151 23.6 88 0.663 0.202 17.6 100 0.709 0.216 16.5 108 0.738 0.225 15.9 150 0.877 0.267 13.3 174 0.948 0.289 12.3 200 1.02 0.311 11.5 300 1.27 0.387 9.21 400 1.48 0.452 7.91 450 1.58 0.481 7.41 <th>Trequency</th> <th>Allen</th> <th>uation</th> <th>TOwer</th>	Trequency	Allen	uation	TOwer
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[MHz]		[dB/100ft]	[kW]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5		0.0146	244
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				121
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0.217		53.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	0.309	0.0942	37.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30		0.116	30.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0.495	0.151	23.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88	0.663	0.202	17.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	0.709		16.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	108	0.738	0.225	15.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150		0.267	13.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.948	0.289	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	1.02	0.311	11.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	1.27	0.387	9.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	1.48	0.452	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	450	1.58	0.481	7.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	1.67	0.510	7.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	512	1.70	0.517	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	600	1.85	0.564	6.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	700	2.01	0.614	5.82
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	750		0.638	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				5.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
960 2.40 0.733 4.88 1000 2.46 0.750 4.76 1250 2.79 0.851 4.19 1400 2.98 0.908 3.93 1500 3.10 0.945 3.77 1700 3.33 1.02 3.51 1800 3.45 1.05 3.39 2000 3.67 1.12 3.19 2100 3.77 1.15 3.10 2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
1500 3.10 0.945 3.77 1700 3.33 1.02 3.51 1800 3.45 1.05 3.39 2000 3.67 1.12 3.19 2100 3.77 1.15 3.10 2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
1700 3.33 1.02 3.51 1800 3.45 1.05 3.39 2000 3.67 1.12 3.19 2100 3.77 1.15 3.10 2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
1800 3.45 1.05 3.39 2000 3.67 1.12 3.19 2100 3.77 1.15 3.10 2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2000 3.67 1.12 3.19 2100 3.77 1.15 3.10 2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2100 3.77 1.15 3.10 2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2200 3.88 1.18 3.02 2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2400 4.08 1.24 2.87 2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2500 4.18 1.28 2.80 2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2600 4.28 1.31 2.73 2700 4.38 1.34 2.67				
2700 4.38 1.34 2.67				
2750 4.43 1.35 2.64				
	2750	4.43	1.35	2.64

Attenuation at 20°C (68°F) cable temperature Mean power rating at 40°C (104°F) ambient temperature

Ī

Other Characteristics

Fire Performance: VSWR Performance:

Other Options:

Halogene Free

Standard

LCF158-50JL

[dB (VSWR)]

Phase stabilized and phase matched cables and assemblies are available upon request.

24 (1.135)