

RLK cable, A-series

7/8" RADIAFLEX® RLKW Cable, A-series

- RADIAFLEX® functions as a distributed antenna to provide communications in tunnels, mines and large building complexes and is the solution for any application in confined areas.
- Slots in the copper outer conductor allow a controlled portion of the internal RF energy to be
 radiated into the surrounding environment. Conversely, a signal transmitted near the cable will
 couple into the slots and be carried along the cable length.
- RADIAFLEX® is used for both one-way and two-way communication systems and because of its broadband capability, a single radiating cable can handle multiple communication systems simultaneously.
- This RADIAFLEX® radiating cable utilize a low-loss cellular polyethylene foam dielectric and a smooth copper outer conductor which offers a superior electrical performance together with good bending properties.

FEATURES / BENEFITS

- Wideband from 30 MHz to 1950 MHz
- For applications in tunnels and buildings
- A Low coupling loss variations

Technical Features

GENERAL SPECIFICATIONS

Size		7/8"	
ELECTRICAL SPECIFICATIONS			
Max. Operating Frequency	MHz	1950.0	
Cable Type		RLKW	
Impedance	Ohm	50 +/- 2	
Velocity	%	89.0	
Capacitance	pF/m (pF/ft)	75 (22.9)	
Inductance	μH/m (μH/ft)	0.1875 (0.057)	
DC-resistance inner conductor	Ω/km (Ω/1000ft)	1.74 (0.53)	
DC-resistance outer conductor	Ω/km (Ω/1000ft)	2.52 (0.77)	
Stop bands	MHz	115-135, 235-255, 360-375, 475-505, 600-630, 720-750, 970-1075, 1340-1460, 1590-1700	
MECHANICAL SPECIFICATIONS			
Jacket		CPR, EN50575:2017 classified cable	
Jacket Description		Halogen free, non corrosive, flame and fire retardant, low smoke, polyolefin + flame barrier tape above outer conductor for lowest cable loss	
Slot Design		Groups of vertical slots at short intervals	
Inner Conductor Material		Copper Tube	
Outer Conductor Material		Overlapping Copper Foil	
Diameter Inner Conductor	mm (in)	9.3 (0.37)	
Diameter Outer Conductor	mm (in)	23.8 (0.94)	
Diameter over Jacket	mm (in)	28.5 (1.12)	
Minimum Bending Radius	mm (in)	350 (13.8)	
Cable Weight	kg/m (lb/ft)	0.55 (0.37)	
Tensile Force	N (lb)	2300 (507)	
Indication of Slot Alignment		Bulge atop slots	
Recommended Clamp Spacing	m (ft)	0.9 (3)	
Minimum Distance to Wall	mm (in)	80 (3.15)	
TEMPERATURE SPECIFICATIONS			
Storage Temperature	°C(°F)	-70 to 85 (-94 to 185)	
Installation Temperature	°C(°F)	-15 to 60 (5 to 140)	
Operation Temperature	°C(°F)	-40 to 85 (-40 to 185)	

RLKW78-50CPR

All information contained in the present datasheet is subject to confirmation at time of ordering

RFS

7/8" RADIAFLEX® RLKW Cable, A-series

Frequency	Longitudinal loss dB/100m (dB/100ft)	Coupling Loss		TESTING AND ENVIRONMENTAL			
MHz		50%, dB	95%, dB	Jacket Testing Methods	Test methods for fire behaviour of cable : IEC 60754-1/-2 smoke emission: halogen free, non corrosive IEC 61034 low smoke		
75	1,05 (0,32)	48 (52)	59 (63)	-	IEC 60332-1 flame retardant IEC 60332-3-24 fire retardant		
150	1,52 (0,46)	57 (60)	66 (68)	-	UL1666, ASTM E 662, NES711 and NES713		
380	2,56 (0,78)	58 (61)	61 (65)	-	CPR: EN50575:2017 class Cca s1 do a1		
400	2,65 (0,81)	58 (61)	61 (65)				
450	2,88 (0,88)	58 (61)	61 (65)	-			
800	4,44 (1,35)	60 (61)	62 (65)	-			
870	5,14 (1,57)	56 (58)	62 (64)	-			
900	5,12 (1,56)	56 (58)	64 (66)				
960	5,47 (1,67)	56 (58)	62 (64)	-			
1800	13,32 (4,06)	50 (52)	60 (63)				
1900	14,62 (4,46)	50 (52)	59 (63)	-			
External Document Links No Web URL to CPR ressources with DoP and CE-label download folders Image: Comparison of the second sec		Note →	Coupling loss as well as longitudinal attenuation of RADIAFLEX® cables are measured by the free space method according to IEC 61196-4.				
		⊛	Coupling loss values are measured with a radial (below 125 MHz and above 800 MHz) or parallel (125- 300MHz) orientated dipole antenna.				
Θ			⊝	The coupling loss values given in brackets are average values of all three spatial orientations (radial, parallel and orthogonal) of dipole antenna.			
6		⊛	Coupling loss values are given with a tolerance of +5 dB and longitudinal loss values with a tolerance of +5%. Note: Measured values below nominal are better. They are not limited by any tolerance-range.				
			Θ	In case of a conflict of operational and stop band, please contact RFS for further assistance.			
		ĕ	As with any radiating cable, the performance in building or tunnel environments may deviate from figures base on free space method.				

REV DATE: 19.Jul.2017